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Abstract: With the evolution of conventional VANETs (Vehicle Ad-hoc Networks) into the IoV (Internet of

Vehicles), vehicle-based spatial crowdsourcing has become a potential solution for crowdsourcing applications.

In vehicular networks, a spatial-temporal task/question can be outsourced (i.e., task/question relating to a

particular location and in a specific time period) to some suitable smart vehicles (also known as workers)

and then these workers can help solve the task/question. However, an inevitable barrier to the widespread

deployment of spatial crowdsourcing applications in vehicular networks is the concern of privacy. Hence, We

propose a novel privacy-friendly spatial crowdsourcing scheme. Unlike the existing schemes, the proposed

scheme considers the privacy issue from a new perspective according that the spatial-temporal tasks can be

linked and analyzed to break the location privacy of workers. Specifically, to address the challenge, three

privacy requirements (i.e. anonymity, untraceability, and unlinkability) are defined and the proposed scheme

combines an efficient anonymous technique with a new composite privacy metric to protect against attackers.

Detailed privacy analyses show that the proposed scheme is privacy-friendly. In addition, performance

evaluations via extensive simulations are also conducted, and the results demonstrate the efficiency and

effectiveness of the proposed scheme.
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1 Introduction

Spatial crowdsourcing, as a new paradigm, has been

proposed recently to help solve spatial-temporal

questions by the public. In other words, the goal

of spatial crowdsourcing is to outsource a set of

particular tasks (i.e., tasks related to a specific

area/region/road in a given period) to a group of

suitable workers who will perform these tasks dur-

ing that time. Generally, these crowdsourcing tasks

could be categorized into two types: sensing-based

and human-intelligence-based tasks. For sensing-

based tasks, the workers can easily work as mov-

ing sensors to conduct tasks, such as air quality

sensing in the city, clicking photos and recording

audios/videos at some specific places. Compara-

tively, human-intelligence-based tasks are more com-

plex because each worker is required to not only be

equipped with multiple sensors but also use his/her

intelligence to make decisions or give suggestions,
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such as recommending nearby delicious restaurants

and reporting nearby traffic conditions. In real-

world scenarios, there exist many spatial crowdsourc-

ing applications. The typical applications include

MediaQ (video clips)[1], Foursquare (local hotspots)

(https://foursquare.com.), and Waze (traffic moni-

tor) (https://www.waze.com.). In general, spatial

crowdsourcing applications have drawn increasing

attention from industry.

In spatial crowdsourcing applications, mobile de-

vice users, such as smartphone users are regarded as

the most common workers. Although smartphone-

based spatial crowdsourcing has proven its potential

in dealing with complex spatial-temporal issues, it

is undeniable that the vehicle-based spatial crowd-

sourcing is evolving rapidly with the advent of ITS

(intelligent transport system)[2]. The evolution of

conventional VANET into the IoV indicates that the

vehicular networks may support a more general vehi-

cle to X (X can be vehicles, roadside units, sensors,

human, or Internet) communication by integrating

the inter-vehicle network (i.e., vehicles’ interconnec-

tion), the intra-vehicle network (also named con-

nected vehicles), and the vehicular mobile Internet

(each vehicle is seen as a wheeled mobile node). How-

ever, the modern smart vehicle is able to be equipped

with a large number of on-board sensors and a pow-

erful processor, which can help obtain information

about the surroundings (e.g., temperature, humid-

ity, and pollution gases). Moreover, a smart ve-

hicle’s mobility characteristics appropriately match

the spatial-temporal requirements for crowdsourcing

tasks. Hence, vehicle networks could be a proper

infrastructure in the urban area for spatial crowd-

sourcing applications (Fig. 1).

A vehicle-based spatial crowdsourcing system usu-

ally consists of three major roles: workers, crowd-

sourcing platform, and users. The users upload

the spatial-temporal tasks to the platform, where

the workers are a group of smart vehicles that con-

tribute to the uploaded crowdsourcing tasks. How-

ever, there exist some underlying security and pri-

vacy concerns, and these concerns seriously inhibit

the widespread deployment of spatial crowdsourcing

applications in vehicular networks. Concretely, as a

spatial-temporal task requires the workers to upload

their locations in real time, the platform can eas-

ily infer the workers’ locations, which raises serious

location privacy concerns of the workers.

RSU

worker

Internet

human + sensors worker

Figure 1 Spatial crowdsourcing in vehicular networks

In recent years, several related schemes and ap-

proaches have been proposed to cope with the lo-

cation privacy issue for spatial crowdsourcing[3-7].

Most of these schemes address the location privacy

issue by masking the location information based on

differential privacy approach (e.g., by adding noise

to the uploaded location data). However, a critical

fact is ignored and never discussed in these schemes.

Even if the uploaded location is masked, spatial-

temporal tasks performed by the workers can also

be linked and analyzed to compromise the workers’

location privacy, especially considering that the vehi-

cles are workers on the fixed road network. In other

words, regardless of the type of techniques used by

the workers to mask their locations, the platform

knows that these workers will be physically present

at some certain places to complete the task in a short

period. For instance, a vehicle plans to accept crowd-

sourcing tasks on its way from office to home, and

chooses several jobs in the city, as shown in Fig. 2.

The spatial-temporal tasks could be easily linked and

analyzed by the platform to recover the trajectories

of this vehicle according to the tasks accepted by

the vehicle. There are pieces of evidence that are
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likely to reconstruct the path even with sparse loca-

tion data of vehicles[8]. Moreover, the reconstructed

trajectories can be utilized to identify a particular

smart vehicle even if it uses pseudonyms to hide its

real identity.

spatial-temporal tasks real route for vehicle trajectory analysis

Figure 2 Linking of spatial-temporal tasks

To address the above-mentioned privacy challenge

for spatial crowdsourcing system in vehicular net-

works, in this paper, we propose a novel privacy-

friendly spatial crowdsourcing scheme. In our sys-

tem, each vehicle can manage their location pri-

vacy while performing the crowdsourcing tasks as an

anonymous mobile worker with minimal privacy dis-

closure and finally gain the corresponding rewards.

We regard the contributions of this paper to be three-

fold:

• We propose a composite privacy metric for

evaluating privacy exposure for spatial crowdsourc-

ing applications in vehicular networks; this involves

three parts: the frequency of changing pseudonym

k, degree of task distribution degreet, and degree of

task similarity degrees. Based on the proposed pri-

vacy metric, the workers can select suitable tasks and

control their privacy leakage through different set-

tings. We also analyze the real taxi-trace dataset[9]

to demonstrate the effectiveness of the proposed pri-

vacy metric.

• We propose a privacy-friendly spatial crowd-

sourcing scheme to achieve location privacy by com-

bining an efficient anonymous technique with the

proposed privacy metric; this allows the smart ve-

hicles, that is, workers to anonymously accept the

crowdsourcing job, report the results, and obtain

the corresponding rewards. Moreover, the proposed

scheme protects workers’ location privacy in terms

of not only anonymity but also untraceability and

unlinkability.

• To demonstrate the utility of our proposed

scheme, we implemented the proposed scheme in

Java on a desktop. We then ran extensive exper-

iments and simulations to evaluate its effectiveness

and efficiency in terms of computational cost and

communication overhead.

The remainder of this paper is organized as fol-

lows. Section 2 shows our formalization of the sys-

tem and privacy models and identification of the de-

sign goal. Next, we present the preliminaries in sec-

tion 3 and the detailed design of our proposed scheme

in section 4. The privacy analysis and performance

evaluation are presented in sections 5 and 6, respec-

tively. Section 7 reviews related work. Finally, sec-

tion 8 concludes this paper.

2 Models and design goal

In this section, we formalize the system and privacy

models for spatial crowdsourcing applications in ve-

hicular networks, and describe our design goal.

2.1 System model

We mainly consider five entities in vehicle-based

spatial crowdsourcing applications, namely the TA

(Trust Authority), SC-servers (Spatial Crowdsourc-

ing servers), RSUs (Roadside Units), SVs (Smart Ve-

hicles; i.e., workers), and SCs (Service Consumers).

Each entity can connect and communicate with each

other by either wired or intermittent wireless chan-

nels, as shown in Fig. 3.

• TA: TA takes charge of the registration of SC-

servers, that is, the SVs and the SCs. It also dis-

tributes the related key materials (e.g., public and

private key pairs) to them.

• SC-servers: SC-servers are the spatial crowd-

sourcing platforms run by a private company, such

as the Amazon Mechanical Turk, and have powerful

computation and storage capability. These servers

can accept the spatial-temporal tasks from the SCs

and publish these tasks in their crowdsourcing plat-

forms. In addition, any registered worker can accept
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the posted jobs, report the results, and receive re-

wards based on the platforms.

roadside units

smart vehicles

crowds (workers)

spatial crowdsourcing 
servers

service consumers

trust authority
(offline)

communication channel

Figure 3 System model under consideration

• RSUs: RSUs are viewed as the communication

nodes in our model. Being deployed in the city, they

act as the middleware layer to build the connection

between the workers and SC-servers. In other words,

they can communicate with the nearby SVs as well

as SC-servers, and deliver the data packets received

from the SVs to SC-servers.

• SVs: SVs are regarded as workers who vol-

unteer to accept and perform open tasks in the

crowdsourcing platforms for some substantial re-

wards/incentives. Being equipped with various sen-

sors, SVs can accomplish different task types, such

as traffic monitoring and air condition sensing. In

addition, the drivers of SVs can even achieve more

complex tasks based on human intelligence.

• SCs: SCs are regarded as consumers of the

crowdsourcing service provided by SC-servers. They

can send task requests to the SP and wait for the

results on a pay-per-request/use basis.

To clarify the system model, we also defined the

spatial-temporal task in the vehicle-based crowd-

sourcing applications.

Definition 1 (Spatial-temporal task) Let Tsk =

{tsk1, tsk2, · · · } be a set of spatial-temporal tasks,

where tski = (idtski , loctski , evnttski , [t
s
tski

, tetski ],

rwdtski). Each spatial-temporal task tski involves

a unique serial number idtski , specific location

loctski , task description evnttski , valid time period

[tstski , t
e
tski

], and reward rwdtski .

2.2 Privacy model

As discussed in many recent research papers[4,10-12]

related to spatial crowdsourcing, a significant barrier

of the successful crowdsourcing applications is the

privacy concern. Hence, based on the system model,

we first define the trust levels of all entities from a

real-world perspective, and describe the appropriate

privacy requirements for protecting workers’ location

privacy.

• TA: TA is assumed to be fully trusted with high

physical protection, and is difficult to be compro-

mised by an attacker. For instance, TA has several

servers that are ran by the official governments or

trusted companies, such as GlobalSign.

• SC-servers: SC-servers are assumed to be semi-

honest (i.e., honest-but-curious; they will faithfully

follow procedures of protocols but may be curious

and attempt to infer worker location). That is, SC-

servers are one of the potential attackers.

• RSUs: RSUs are assumed to be trustable. Sup-

pose that RSUs are not trustable, the location pri-

vacy issues for workers are nonexistent because RSUs

know the exact location of any vehicle.

• SVs and SCs: Some SVs and SCs are assumed

to be honest-but-curious, and they may collude with

SC-servers to break the location privacy of other

workers. That is, a small portion of SVs and SCs

are potential attackers.

Side-information based attacks. In this study,

we considered a side-information-based attack

model[13]. Specifically, the attackers have the side

information about some victims’ location points,

whose snapshots can be obtained by the attackers

over a period. That is, the attackers may know

the traffic information through photographs (i.e., im-

age/video data about the vehicle going through a

victim location point at an associated time instant.
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The data may include the vehicle’s speed and license

number). In practice, the side information could

be obtained easily because some victims’ location

points are open to observations without any restric-

tions. Hence, the attackers can obtain the side infor-

mation directly by installing some cameras at these

victim location points. With the side information,

the attackers can infer the trajectories of any worker

and link the real vehicle’s identity to the particular

worker in the crowdsourcing platform.

Privacy requirements. Based on the aforemen-

tioned trust definition, our goal is to prevent honest-

but-curious attackers from extracting workers’ sen-

sitive location information while these workers vol-

untarily contribute the spatial-temporal reports and

receive rewards. Thus, the following privacy re-

quirements should be satisfied for the workers to be

anonymous and indistinguishable.

• Anonymity: In our system, attackers only ob-

tain a set of pseudonyms of workers instead of their

real identities. That is, SC-servers can authenticate

the reports provided by any worker without revealing

their real identities, and these anonymous workers

can finally gain their corresponding rewards.

• Untraceability: Attackers cannot easily analyze

the distribution of any worker task to identify their

trajectories. That is, even if some SCs or SVs collude

with the SC-servers, SC-servers still cannot precisely

determine the paths of workers, who accept one or

several different tasks, to trace them. For instance,

suppose that a worker accepts 10 spatial-temporal

tasks in a day. Although SC-servers exactly know

that this worker performs the corresponding tasks

in these precise locations, they cannot easily recon-

struct the trajectory of this worker in the day based

on the collected information when untraceability is

satisfied.

• Unlinkability: The probability that the attack-

ers can link two pseudonyms should be under the

privacy control of workers. That is, even if some

SCs or SVs collude with the SC-servers, SC-servers

still cannot clearly decide whether two pseudonyms

belong to the same worker. Concretely speaking, if

a worker uses a pseudonym pid1 to accept tasks in a

day and uses another pseudonym pid2 to accept tasks

the next day, SC-servers cannot easily link these two

pseudonyms and identify that these two pseudonyms

belong to the same worker when unlinkability is guar-

anteed.

A common belief that anonymity is not enough

for protecting location privacy in the crowdsourc-

ing platform is because the attackers can link two

anonymous workers by analyzing the collected infor-

mation, such as unique human behaviors[14]. Hence,

to achieve location privacy, we consider not only the

anonymity but also the untraceability and the un-

linkability in the privacy model.

2.3 Design goals

Our design goal is to design a privacy-friendly spatial

crowdsourcing scheme in vehicular networks, achiev-

ing the following two objectives.

• Privacy: The crowdsourcing scheme should

achieve the above-mentioned privacy requirements;

this is the basic goal. Concretely, the workers are

able to control their privacy levels and attempt to

find a trade-off between privacy and functionality

(i.e., quality of protection).

• Efficiency: Although introducing privacy-

preserving techniques that is used to achieve pri-

vacy preservation usually influences the efficiency of

a system, the crowdsourcing scheme should also pro-

vide good user experiences (i.e., quality of experi-

ence), and the computational and communication

cost should be acceptable.

3 Preliminaries

In this section, we outline the pairing technique and

the Merkle tree, which serve as the building blocks

of the proposed scheme.

3.1 Bilinear pairing

Let G and GT be two cyclic groups of prime order

q with multiplication. Further, let g be a generator

of G and e be a bilinear map. Let e : G × G → GT

be a bilinear map with the following properties: i)
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Bilinearity: for all u, v ∈ G and a, b ∈ Zq , we have

e(ua, vb) = e(u, v)ab; ii) Nondegeneracy: e(g, g) �= 1;

and iii) Computability: there exists an efficient algo-

rithm to compute bilinear map e : G×G → GT .

Definition 2 (A bilinear pairing generator al-

gorithm Gen()) Gen() can take a security param-

eter ξ as input, and outputs 5-tuple parameters

(q, g,G,GT , e).

3.2 Merkle tree

Suppose that we have m values x1,· · · , xm, where m

is a power of 2 (if m is not the power of 2, we can in-

sert random values to satisfy the requirement). Let

H ′ : {0, 1}∗ to{0, 1}∗ be a one-way hash function.

Then, the Merkle tree can be constructed using the

m values x1,· · · , xm under the hash function H, and

be represented as a balanced binary tree in which

each node is associated with a hash value. There

are m leaf nodes, and for each leaf node hi, the

hash value is H ′(xi) , where i ∈ [1,m]. In addi-

tion to leaves, other nodes in the Merkle tree are

derived from its left and right childs’ hash values.

For instance, the hash value of the node hi,i+1 is

H ′(H ′(xi)|H ′(xi+1)), where | is the concatenation

operation. For simplicity, we consider an example

of a Merkle tree with only four values (x1, x2, x3,

and x4) and construct the Merkle tree, as shown in

Fig. 4.

node

1h

2,1h 4,3h

4,1h

2h 3h 4h )4,3v|2,1v(H=4,1v

hash value
)1x(H=1v
)2x(H=2v

)3x(H=3v
)4x(H=4v

)2v|1v(H=2,1v
)4v|3v(H=4,3v

2h
1h

3h

4h

2,1h

4,3h

4,1h

Figure 4 Merkle tree for four values

4 Proposed privacy-friendly spatial

crowdsourcing scheme

In this section, we describe our proposed spatial

crowdsourcing scheme in vehicular networks. Before

describing each part in our scheme, we first present

a privacy metric for evaluating the privacy exposure

of workers who accept various spatial-temporal tasks

with different pseudonyms.

4.1 A privacy metric for spatial crowd-

sourcing tasks

The proposed composite metric considers three parts

to measure the location privacy of a worker: the fre-

quency of changing pseudonyms, degree of task dis-

tribution, and degree of task similarity.

4.1.1 Definition of privacy

To ensure clarity about the privacy of workers in

vehicular networks, we first define the location pri-

vacy in spatial crowdsourcing applications. A gen-

eral definition of privacy in Ref. [15] states privacy

as the degree to which an entity cannot be linked to

its real identity. Similarly, the workers’ location pri-

vacy can be defined as follows in real-world spatial

crowdsourcing applications.

Definition 3 (Worker’s location privacy) The de-

gree to which the spatial-temporal characteristic of a

worker cannot be linked to its identities and trajec-

tories, although the worker accepts multiple spatial-

temporal tasks in the crowdsourcing platform over a

contiguous series of time intervals.

4.1.2 Frequency of changing pseudonyms

If SV, as a worker in the crowdsourcing applications,

does not change the pseudonym, the tasks he/she has

accepted will easily be linked to his/her trajectory

and used for further analysis. If a worker changes

pseudonym for each spatial-temporal task, the in-

formation revealed by the tasks cannot be directly

linked, and the workers can obviously obtain a higher

privacy level. Thus, it is desirable that the worker al-

ters his/her pseudonym only when it is necessary as

changing pseudonyms has additional costs. Hence,

we consider a k-time pseudonym of each worker in

our proposed scheme, that is, a worker will alter

his/her pseudonyms for k tasks in a day, where k

is controlled by the worker. Then, the pseudonym

duration |T | is decided by k.
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• Pseudonym duration. |T | is defined as the time

duration of the worker not changing pseudonyms, so

T is a collection of contiguous time intervals start-

ing from the first task to the k-th task. Formally,

T = {tj |j = 1, 2, · · · , k − 1}, where tj is the time

interval between two tasks.

4.1.3 Degree of task distribution

This degree evaluates a worker’s untraceability,

which can be measured by testing the CSR (Com-

plete Spatial Randomness) of the spatial dataset and

time deviation in both spatial and temporal dimen-

sions. According to the definition of CSR, if the spa-

tial dataset exhibits complete spatial randomness, no

underlying structure can be obtained from it, and

therefore the dataset’s further analysis will gain an

insignificant amount of information. That is, given

that there are k location points inside a region, CSR

can help measure the degree to which the locations

of these task points are independent and identically

distributed and uniformly distributed inside the re-

gion.

A large number of methods have been proposed

to test the spatial dataset for CSR[16]. However, all

these tests are basically sensitive to measuring two

types of randomness: local and global randomness.

Local randomness implies a type of test that is good

at detecting aggregation and regularity (i.e., cluster-

ing) but not at detecting heterogeneity (i.e., spac-

ing). In contrast, global randomness implies a type

of test that is good at detecting clustering but not

spacing. Hence, we choose an extension of Pollard’s

test flexible for recognizing both the local and global

randomness.

Based on the extension of Pollard’s test,

by inputting the dataset of location points

{(X,Y )|(x1, y1), (x2, y2), · · · , (xk, yk)}, we can use

the following equation to calculate the degree of task

distribution.

ds =
C1[kln(C2)− C3]

C4
,

where C1 = 12j2k, C2 =
∑k

i=1

x2
ij

k , C3 =
∑k

i=1 lnx
2
ij , and C4 = (6jk + k + 1)(k − 1). Here, j

denotes the j-th nearest neighbor (j can be 1,2,3· · · ),
xij is the distance from the i-th point to its j-th Eu-

clidean nearest neighbor, and k is the total number

of location points due to k tasks. Then, if the degree

ds = 1, the location distribution of tasks satisfies

complete spatial randomness. ds < 1 indicates the

overdispersion (spacing) of the location points and

ds > 1 indicates the underdispersion (clustering) of

the location points.

In addition, we should consider untraceability in

the temporal dimension. Suppose that the aver-

age velocity of a worker is V , and the distance

(i.e., the real distance in a real-world map ob-

tained from the state-of-the-art applications, such

as Google map) between two continuous tasks is

D = Distance(A,B), then the average time for

the worker travelling from A to B can be calcu-

lated as tavg = D/V . If the time interval between

two continuous tasks is tA,B , the time deviation be-

tween two consecutive tasks can be calculated as

tdev = |tA,B − tavg|. The average time deviation is

dt =
∑k−1

i=1 (tdevi)/(k − 1).

The degree of task distribution degreet can be

measured by (|ds − 1| � ths, dt � tht), where ths

and tht are the thresholds that should be controlled

by the worker.

4.1.4 Degree of task similarity

This degree is proposed to evaluate worker unlink-

ability, which can be measured by computing the

trajectory similarity of spatial-temporal tasks under

various pseudonyms. Actually, the modeling and in-

terpreting of the trajectories based on the spatial-

temporal tasks is difficult because of the sparse and

diverse formats of the tasks’ location information.

Therefore, to quantify the behavior similarity of two

trajectories, we use two general methods, the Haus-

dorff distance and Frechet distance in spatial and/or

temporal dimensions. In other words, the similarity

of two trajectories is not only affected by the geomet-

ric characteristics (i.e., shape) of trajectories but also

correlates to the temporal aspect (i.e., speed). Note

that, the tasks’ content is not under consideration

as the third dimension because we assume that the



66 Journal of Communications and Information Networks

workers have similar abilities and report normalized

data. For example, the photos should be normalized

to the same setting before the workers report them

to the SC-servers in a spatial-temporal photo-taking

task.

Hausdorff distance is commonly used for trajec-

tory matching, and the detailed algorithm is shown

in Algorithm 1. Formally, Hausdorff distance can be

Algorithm 1 HDIST(A,B)

1: Input: Location Point Set A = (a1, a2, · · · , an) and

B = (b1, b2, · · · , bm).

2: Output: Hausdorff distance from A to B, dh.

3: dh = 0;

4: for each point ai in A do

5: dshortest =∞;

6: for each point bj in B do

7: dij = distance(ai, bj);

8: if dij < dshortestthen

9: dshortest = dij ;

10: end if

11: end for

12: if dshortest > dh then

13: dh = dshortest;

14: end if

15: end for

16: return dh;

considered as HDIST(A,B), that is, the worst-case

discrepancy of one trajectory A with respect to an-

other trajectory B. Under the metric of Euclidean

distance, A is similar to B if each location point in A

is close to at least one location point in B. Hausdorff

distance is an elastic method, that is, the method

seeks the maximum conflict rather than attempting

to match each point in A to a point in B. However,

this property also introduces errors and makes the

similarity measurement inaccurate; thus, the Frechet

distance is needed as a supplement.

Unlike Hausdorff distance, Frechet distance can

measure the similarity between two trajectories by

considering both the location points and ordering of

these points along the trajectories. Formally, Frechet

distance can be defined as FDIST(A(t), B(t)), that

is, the minimum length of leash necessary to connect

trajectories A and B. The detailed algorithm for cal-

culating Frechet distance is shown in Algorithm 2.

Algorithm 2 FDIST(A(t), B(t))

1: Input: Ordered Location Point Set A =

(a1, a2, · · · , an) and B = (b1, b2, · · · , bm).

2: Output: Frechet distance between A and B, df .

3: function cal(ca, i, j, A,B)

4: if ca[i, j] > −1 then

5: return ca[i, j];

6: else if i == 1 and j == 1 then

7: ca[i, j] = distance(a1, b1)};

8: else if i > 1 and j == 1 then

9: ca[i, j] = max{cal(ca, i− 1, 1, A,B),

distance(ai, b1)};

10: else if i == 1 and j > 1 then

11: ca[i, j] = max{cal(ca, 1, j − 1, A,B),

distance(a1, bj)};

12: else if i > 1 and j > 1 then

13: ca[i, j] = max{min{cal(ca, i− 1, j, A,B),

cal(ca, i− 1, j − 1, A,B),

cal(ca, i, j − 1, A,B)},

distance(ai, bj)};

14: else

15: ca[i, j] =∞;

16: end if

17: return ca[i, j];

18: Initialize the array ca[1 · · ·n, 1 · · ·m] as −1;

19: return df = cal(ca, n,m,A,B);

The degree of task similarity degrees can be mea-

sured by (dh 6 thh, df 6 thf ), where thh and thf

are the thresholds that should be controlled by the

worker.

4.2 Privacy-friendly spatial crowdsourc-

ing

In this section, we present our privacy-friendly

crowdsourcing scheme consisting of three parts:
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bootstrapping, privacy-friendly crowdsourcing, and

revocation.

4.2.1 Bootstrapping

The scheme has a fundamental bootstrapping phase,

in which TA generates all system parameters

and registers the workers and SC-servers. Specif-

ically, given the security parameter τ , TA runs

Gen() to generate the bilinear pairing parameters

(q, g,G,GT , e). TA then selects a random element

xTA ∈ Z∗q and generates a pair of public and private

keys (pkTA = gxTA , skTA = xTA) for itself. The pub-

lic key pkTA is open to all workers and SC-servers;

the private key skTA is a secret that is used to issue

certificates for the registration of workers and SC-

servers. TA also defines two public cryptographic

hash functions H() and H0(), where H : {0, 1}∗ → G
and H0 : {0, 1}∗ → Z∗q .

• SC-server registration. An SC-server sends the

registration request to TA. After verifying the iden-

tity idSC of SC-server, TA selects a random ele-

ment xSC ∈ Z∗q and generates a pair of public and

private keys (pkSC = gxSC , skSC = xSC) for the

SC-server. It also assigns the server a certificate

certSC , which can be used to confirm the validity

of its identity. Generally, TA uses skSC to generate

a signature sigSC = H(idSC |pkSC)xTA on idSC and

pkSC . TA finally outputs the certificate as a tuple

certSC = (id, pkSC , sigSC), and sends the certificate

certSC and the corresponding private key skSC to

the SC-server.

• SV/SC registration. A worker (SV) Wi or an

SC Cj sends the registration request to TA. Af-

ter verifying the identity idWi of the worker or

the identity idCj of the SC, similar to SC-server

registration, a new random element xWi ∈ Z∗q or

xCj ∈ Z∗q is selected to generate a pair of public

and private keys (pkWi = gxWi , skWi = xWi) for

the worker or (pkCj = gxCj , skCj = xCj ) for the

SC. Then, a certificate will be constructed for the

worker as certWi
= (idWi

, pkWi
, sigWi

) or for the

SC as certCj = (idCj , pkCj , sigCj ), where sigWi
=

H(idWi
|pkWi

)xWi is the signature of idWj
|pkWj

and sigCj = H(idCj |pkCj )
xCj is the signature of

idCj |pkCj . TA finally sends the certificate certWi

and private key skWi
to the worker, or sends the

certificate certCj and private key skCj to the SC.

Note that, TA is entirely offline in the process of

crowdsourcing, and is only responsible for registra-

tion and revocation.

4.2.2 Privacy-friendly crowdsourcing

In our system, SC-servers run the crowdsourcing

platform, and the following steps show the details

of privacy-friendly crowdsourcing on this platform.

Phase 1. Task posting: A service con-

sumer Cj first generates a spatial-temporal task

tskj = (idtskj , loctskj , evnttskj , [t
s
tskj

, tetskj ], rwdtskj ),

and computes a resignature key for this task as

Rtskj = pk

1
xCj

+H0(idtskj
)

SC = g
xSC

xCj
+H0(idtskj

)
.

Then, Cj submits a 6-tuple (idCj , certCj , tskj , sigtskj =

H(tskj |TS)xCj , Rtskj , TS) to the SC-server, where

TS is the current timestamp identified as date|time.
After receiving the 6-tuple, the SC-server opens

the certificate certCj and obtains the public key

pkCj and signature sigCj . It checks certCj to

verify that (idCj , pkCj ) is generated by TA, and

checks whether the SC is valid and his/her cer-

tificate has been revoked in the certificate revoca-

tion list CRL (detailed in Revocation section). It

also checks the signature sigtskj to validate tskj .

If any check fails, the SC-server rejects the task;

otherwise, it publishes tskj in its crowdsourcing

platform. In addition, the SC-server chooses and

stores a random element θtskj ∈ Z∗q , and publishes

idCj , certCj R
θtskj
tskj

, and pk
θtskj
SC together with tskj

as (idCj , certCj , R
θtskj
tskj

, pk
θtskj
SC , tskj).

Phase 2. Worker preparation: A worker Wi first

picks a random seed SWi
and a random number

rWi ∈ Z∗q . Then, Wi generates his/her pseudonym

as pidWi
= H0(SWi

) (Wi can repeatedly use the ran-

dom seed SWi to generate more pseudonyms) and

blinds the pseudonym as

UWi = H(pidWi |date)rWi ,

where date is the current date indicating when the

pseudonym is generated. In addition, Wi sends the
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authorization request (idWi
, certWi

, UWi
, sigUWi =

H(UWi
|TS)xWi , TS) to the SC-server. Similarly,

after receiving the request, the SC-server decides

whether the request is legitimate by checking the

certificate and signatures. If all checks pass, it cal-

culates

U∗Wi
= U

1
H0(date)+xSC

Wi

= H(pidWi
|date)

rWi
H0(date)+xSC

and sends a response (idSC , certSC , U
∗
Wi
, sigU∗

Wi
=

H(U∗Wi
|TS)xSC )) to the worker. After receiving the

response, Wi first checks the validity of the response

according to the certificate and signatures. If the

check is successful, Wi obtains, unblinds, and stores

the anonymous credentials as

σWi
= (U∗Wi

)
r−1
Wi

= H(pidWi |date)
1

H0(date)+xSC .

Phase 3. Task selection. According to the pri-

vacy metric defined earlier, worker Wi can control

and measure his/her location privacy when select-

ing different tasks. A simple strategy is that worker

Wi changes his/her pseudonym after one day and

chooses at most k jobs on the crowdsourcing plat-

form in one day. When selecting each task, Wi eval-

uates the privacy exposure, and decides whether the

task is under his/her privacy settings. Specifically,

a worker will set four thresholds (ths, tht, thh, and

thf ) according to the defined privacy metric. When

choosing each task, Wi must first calculate ds, dt,

dh, and df , and then check whether |ds − 1| 6 ths,

dt > tht, dh 6 thh, and df 6 thf . If all conditions

are satisfied, the task can be accepted by the worker.

Otherwise, the task is rejected.

After choosing a suitable task tskj , worker Wi ver-

ifies whether task tskj really originates from Cj by

checking

e(pkCj · g
H0(idtskj ), R

θtskj
tskj

) = e(pk
θtskj
SC , g).

=> e(gxCj+H0(idtskj ), g

xSCθtskj
xCj

+H0(idtskj
)
)

= e(gxSCθtskj , g).

=> e(g, g)xSCθtskj = e(g, g)xSCθtskj .

Then, worker Wi performs the task and obtains the

result restskj = idtskj |data if the check is successful.

Phase 4. Anonymous data reporting. To report

the result for tskj , Wi first picks a random unique

serial number snum, random seed α, and random

number vWi ∈ Z∗q . Then, Wi generates a reward-

ing token tokentskj = H0(α) and blinds the token

as β = H(tokentskj |idtskj )vWi . Next, Wi chooses

a random element zWi
∈ Z∗q and encrypts Msg =

restskj |pidWi |σWi |date by using the SC-server’s pub-

lic key as

Msgauth = (H(gzWi , pk
zWi
SC )⊕Msg, gzWi ).

Eventually, Wi reports a 3-tuple (snum,Msgauth, β)

to the SC-server. After receiving the 3-tuple, the

SC-server uses its private key to decrypt Msgauth as

Msg = H((gzWi )xSC , gzWi )⊕Msgauth,

and accepts the report if

e(gH0(date) · pkSC , σWi
) = e(g,H(pidWi

|date)).

Phase 5. Anonymous rewarding. Cj checks the

reports for task tskj on the crowdsourcing platform.

If Cj adopts the report from and agrees to reward

Wi, the SC-server signs the token by using its private

key and θtskj as δWi|tskj = βxSCθtskj . Then, the SC-

server publishes (snum, δWi|tskj ) on the crowdsourc-

ing platform. Worker Wi matches snum on the plat-

form with local serial numbers to download his/her

token δWi|tskj and he/she unblinds the token as

δ∗Wi|tskj = δ
v−1
Wi

Wi|tskj

= H(tokentskj |idtskj )
xSCθtskj .

To gain the payment of tskj , Wi sends the rewarding

request (idtskj , α, δ
∗
Wi|tskj ) to the SC-server, which

verifies the request as

e(δ∗Wi|tskj , g) = e(pk
θtskj
SC , H(H0(α)|idtskj )).

If the request passes the verification tests, the re-

ward is sent back. To prevent repeated rewarding

requests, α is stored in a temporary list Listtskj ,

and the request is first searched in Listtskj . If the
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token has been used before, it must exist in Listtskj
and the repeated rewarding request will be aborted.

Phase 6. Task closing. Finally, SC Cj chooses to

close the task on the crowdsourcing platform, and

the SC-server deletes all the information related to

the task.

4.2.3 Revocation

TA can construct a Merkle tree as the certification

revocation list CRL shown in Fig. 4, where the val-

ues should be the certificates of the revoked workers,

such as x1 = certC1 , x2 = certC2 , x3 = certC3 , and

x4 = certC4
. The root of the Merkle tree should be

signed by TA as sigroot. TA’s signature can guar-

antee the tree’s integrity and authenticity. Then,

the Merkle tree is outsourced to the SC-servers, and

the SC-servers can traverse the Merkle tree to verify

whether a certificate has been revoked or not. For

instance, based on the Merkle tree shown in Fig. 4,

the SC-server can verify certificate certCj by path

(h2, h3,4, h1,4) by first computing h̄1 = H ′(certC1
),

h̄1,2 = H(h̄1|h2) and h̄14 = H(h̄1,2|h3,4). Next, the

SC-server checks whether h̄1,4 = h1,4. If the check

passes, the certificate has been revoked.

5 Privacy analysis

In this section, we discuss privacy properties of the

proposed scheme. In particular, following our design

goal, we will focus on analyzing how the proposed

scheme is privacy-friendly in terms of anonymity, un-

traceability and unlinkability.

The proposed scheme achieves anonymity. Ac-

cording to our proposed scheme, a worker is guar-

anteed anonymity in two phases of privacy-friendly

crowdsourcing: data reporting and rewarding. The

worker is appropriately anonymously authenticated

in these two phases because of the reliance on

the generated blinded pseudonyms at the worker-

preparation phase and the created blinded tokens

at the anonymous-data-reporting phase. The par-

tially blind signature algorithm used in our pro-

posed scheme is similar to the algorithm proposed

by Zhang et al.[17], in whose study the security is

based on the computational Diffie–Hellman prob-

lem. In the worker-preparation phase, although the

SC-server can authenticate the workers Wi based

on their certificate and sign the pseudonyms pro-

vided by Wi, it cannot distinguish the pseudonyms

in the anonymous-data-reporting phase because each

pseudonym is blinded by a random element rWi
.

In the anonymous-data-reporting phase, while the

SC-server can authenticate pseudonyms based on

its signature and sign the token provided by Wi,

it cannot differentiate between the tokens in the

anonymous-rewarding phase because each token is

blinded by a random element vWi
. However, while

the pseudonyms and tokens do not leak informa-

tion, other side channels may be used to break the

anonymity property of the scheme. A special case

is that the IP address of an SV is visible when the

worker submits the data/retrieves a reward to/from

the SC-servers. To deal with this issue, some ad-

ditional mechanisms, such as the TOR network, are

required to ensure that a network connection remains

anonymous.

The proposed scheme achieves untraceability and

unlinkability. According to our proposed scheme, the

worker guarantees untraceability and unlinkability

based on the proposed privacy metric: the frequency

of changing a pseudonym, degree of task distribu-

tion, and degree of task similarity. Suppose that

a worker applies for multiple pseudonyms once in

the worker-preparation phase and changes his/her

pseudonym at every task (k = 1), the worker is con-

sidered to have the highest untraceability and un-

linkability because it is impossible for the SC-servers

to perform the trajectory analysis/mining with only

one valid data. However, the untraceability and un-

linkability is affected by the following parameters:

k, degreet = {ds, dt}, and degrees = {dh, df}.
To measure the privacy exposure, we use a real

taxi-trace dataset[9], which contains GPS coordi-

nates of more than 533 taxis collected in 20 days in

San Francisco, USA. Most of the coordinate-update

frequencies of the taxi vary from 30 to 60 s. Owing to

the lack of a real spatial crowdsourcing dataset, we

simulate the crowdsourcing procedure by using the
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taxi-trace dataset. We consider that a taxi changes

its pseudonym every 24 h by assuming that a taxi

accepts a crowdsourcing job every 1, 2, and 4 h, cor-

responding to k = 24, 12, and 6, and sample the

spatial-temporal points of two taxi’s trajectories in

3 days. The results are shown in Figs. 5 and 6.

As k is decided, the degree of task distribution

degreet is controlled by ds and dt in both spatial

and temporal dimensions. It is evident from Fig. 5(a)

that k influences the complete spatial randomness ds

of spatial tasks. When a worker has accepted more

tasks, less spatial randomness of the worker implies

that more information has been revealed to help an

attacker trace the worker. Moreover, it is easy to

find that the values of ds are much larger than 1,

even though the worker only takes almost six tasks

(4 h/task) in one day. In other words, the worker

needs to carefully choose suitable tasks to avoid dis-

closing more information. As shown in Fig. 5 (b),

k also affects the time deviation dt. In fact, as the

time interval between two consecutive tasks is larger

than 1 h in our simulation, the time correlation be-

tween two tasks is not obvious (> 50 min). How-

ever, a tricky issue, in which the traffic condition

negatively impacts the simulation results, appeared

when we analyze the task distribution in the tempo-

ral dimension. This is because we estimate the speed

of workers based on the distance and time duration

obtained from Google map. The real-time data may

result in inaccurate simulation values.

Figs. 6 (a) and (b) illustrate the degree of task

similarity measured through Hausdorff and Frechet

distances. Evaluation of the degree of task similarity

is difficult because of the lack of real spatial-temporal

task datasets. Although we simulate the crowdsourc-

ing process based on the taxi-trace dataset, the re-

sults may not be precise. Nevertheless, the simula-

tion still demonstrate a phenomenon, in which it is

very difficult to link two pseudonyms of a taxi, while

the attackers merely have a discrete spatial-temporal

dataset. In another phenomenon, fewer tasks do not

imply more difficulties in performing an attack. It

seems to be easier for attackers to link two trajec-

tories when the worker has accepted merely a small

portion of sensitive tasks. Moreover, the workers are

supposed to measure the degree of task similarity by

using both Hausdorff and Frechet distances because

sometimes only spatial correlation can reveal more

information to the attackers without the considera-

tion of time effects.

6 Performance evaluation

This section shows our analysis of the computational

costs and communication overheads of the proposed

scheme. Specifically, we implement our scheme and

evaluate the performance of each part in our scheme.

Our experiment environment is a desktop with 3.1

GHz processor, 8 GB RAM, and Window 7 plat-

form. The proposed scheme is implemented using

Java. For the bilinear pairing operations, we relied

on the Java pairing-based cryptography library and

chose Type A pairings. We also use SHA-512 for the

cryptographic hash functions and define the security

parameter τ = 512.

6.1 Computational costs

We identify the major time-consuming operations

for the onlined privacy-friendly crowdsourcing in the

proposed scheme, as shown in Tab. 1. Texp and Tmul

denote the time cost of exponential and multiplica-

tive operations in G and GT , respectively. The sym-

bols Tpair and Thash represent the time cost of bilin-

ear pairing operation and cryptographic operation,

respectively.

Table 1 Computation complexity

phases parties cost

phase.1
SC

SC-server

2Texp + 2Thash

2Texp + 4Tpair + 2Thash

phase.2
SV

SC-server

5Thash + 3Texp + 4Tpair

2Thash + 2Texp + 4Tpair

phase.3 SV Thash + Texp + Tmul + 2Tpair

phase.4
SV

SC-server

3Thash + 3Texp

2Texp + 3Thash + 2Tpair + Tmul

phase.5
SV

SC-server

Texp

Texp + 2Thash + 2Tpair
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For simplicity, each entity’s computational cost

will be measured separately. Furthermore, as the

bootstrapping can be completed offline and does not

affect the efficiency of a spatial crowdsourcing sys-

tem, we only evaluate the online computational cost

in our proposed scheme. Fig. 7 shows the results.

In our system, SC only participates in task post-

ing. The average computation latency of submitting

a crowdsourcing task to the SC-servers is almost 15

ms at SC side, while the average computation latency

of accepting and publishing a job is 46 ms at the SC-

server side. In the worker-preparation, workers must

submit a request to SC-server and gain pseudonyms.

The average running time is almost 58 ms at the SV

side and 47 ms at the SC-server side. This is be-

cause the computational cost of a worker is larger

than that of an SC-server as the worker must gener-

ate pseudonyms in advance. When selecting a task,

the worker should perform the verification operation,

which costs almost 24 ms. In the anonymous-data-

reporting phase, the SV uploads anonymous creden-

tial and data, while the SC-server performs anony-

mous authentication. The average running time is 26

ms at the SV side and 33 ms at the SC-server side.

Finally, the worker sends the rewarding token to the

SC-server and gains the rewards if the token passes

the anonymous verification. The computational cost

of this phase is 7 and 15 ms at SV and SC-server



72 Journal of Communications and Information Networks

sides, respectively.

For the revocation operation, creating the Merkle

tree for the revoked certificates needs efficient hash-

ing operations and one signature by the TA. A

Merkle tree of height h supports at most 2h certifi-

cates. The computation of the root node of this tree

requires 2h noncryptographic hashing operations and

that of the interior nodes requires 2h − 1 noncryp-

tographic hashing operations. To verify whether a

certificate is revoked, the SC-server should perform

h+1 hashing operations. Several schemes have been

proposed to improve the efficiency and effectiveness

of the Merkle tree regarding computation and stor-

age. For instance, Dahlberg et al.[18] proposed an

efficient sparse Merkle tree structure to balance the

cost of space and time.
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Figure 7 Computational cost of each phase

6.2 Communication overheads

In our proposed scheme, the communication over-

head of the large-sized ciphertext is a major con-

cern. Therefore, we focus on analyzing the commu-

nication overhead when the transmission data is en-

crypted using cryptographic techniques in the wire-

less communication. As we measured in the sim-

ulation, when an SV uploads his/her message, the

message size is less than 10 KB, which is acceptable.

Note that, we only evaluate the message size with-

out data because the data size could be variable as

a result of different task types. We also considered

that the anonymous-data-reporting and anonymous-

rewarding phases are two bottlenecks for the crowd-

sourcing system, and there may be a large number

of concurrent requests from workers. Hence, when

implementing our scheme, we also spawn multiple

threads on the SC-server, each thread corresponding

to a single worker submitting the report and sending

the rewarding request. Our findings show that our

scheme scales well with the increased number of SVs.

The SC-server can handle up to 200 concurrent SV

requests/s for data reporting, with a response time

of 100 ms for each request. Moreover, the SC-server

can handle 250 rewarding requests/s with a response

time of 88 ms for each request.

7 Related works

In recent years, spatial crowdsourcing has attracted

the interest from the research community (see

Refs. [19-22]). Generally, there are two types of

spatial crowdsourcing schemes based on different

data sources (i.e., workers), namely: mobile de-

vice users[23] and vehicles[24]. With the rapid devel-

opment of VANET and communication technology,

vehicle-based crowdsourcing applications have be-

come increasingly realistic and many crowdsourcing

applications have been proposed, for example, real-

time navigation[25], air-quality sensing[11,12], and

traffic monitoring[26].

Many research topics have been studied in the area

of spatial crowdsourcing, such as how to generate the

strategy for task assignment/allocation[20], how to

detect the truth from the crowdsourced results[21],

and how to design a proper incentive mechanism

for the workers[22]. Although spatial crowdsourc-

ing applications can lead to significant benefits to

SCs, there are fundamental security and privacy is-

sues that must be examined[10,27], such as how to

protect the location privacy of workers[3-7].

To protect the worker’s location privacy in spa-

tial crowdsourcing, To et al.[4] introduced a secure

framework for spatial crowdsourcing based on differ-

ential privacy and developed an interactive visualiza-
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tion and tuning toolbox for privacy-preserving spa-

tial crowdsourcing in a subsequent study[6]. Build-

ing on To’s framework, Shen et al.[7] proposed a

new framework under the honest-but-curious model.

Moreover, Hu et al.[3] developed an approach to pro-

tect location privacy in spatial crowdsourcing based

on k-anonymity. From another perspective, Gong et

al.[5] proposed a privacy-preserving task recommen-

dation scheme based on location and other sensitive

information. The scheme is designed to recommend

suitable crowdsourcing tasks to mobile workers who

are concerned about their privacy. Furthermore, Ni

et al.[25] designed an anonymous crowdsourcing sys-

tem for navigation applications based on the group

signature technique.

Our proposed scheme differs from existing litera-

tures in that we attempted to address the location

privacy issues of spatial crowdsourcing from a dif-

ferent viewpoint so that the sparse spatial-temporal

tasks can still be linked to the workers’ trajectories;

none of the existing schemes can deal with this issue

except for the proposed scheme. In addition, we also

integrated an efficient anonymous technique with a

new privacy metric to offer a better crowdsourcing

service in a privacy-friendly manner.

8 Conclusion

In this paper, we proposed a privacy-friendly spatial

crowdsourcing scheme in vehicular networks. The

proposed scheme can not only allow the workers to

accept crowdsourcing tasks, report the results, and

gain rewards anonymously but also allows them to

control their privacy leakage according to the pro-

posed privacy metric. Detailed privacy analyses

show that the proposed scheme is privacy-friendly

under our defined privacy model. In addition, exten-

sive performance analyses and experiments were con-

ducted, and the results indicate that the proposed

scheme is efficient in both computational costs and

communication overheads. In future, we will con-

sider a more sophisticated problem about how to

balance the privacy issue and the task’s income so

that the location privacy can be guaranteed while

the worker can gain a better benefit by choosing ap-

propriate tasks.
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